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The plane contact problem of the transmission of a normal force of specified strength onto an elastic anisotropic, wedge-shaped 
plate by an elastic beam of variable flexural stiffness is considered. The beam is coupled to one of the edges of the plate and its 
other edge is stress-free. The solution of the problem is obtained in closed form by reducing it to a Karleman boundary-value 
problem with shear for a strip. A conclusion is reached concerning the nature of the discontinuity of the normal contact stress 
at the vertex of the wedge. © 2005 Elsevier Ltd. All rights reserved. 

Contact problems of the interaction of elastic bodies of different shape with thin elastic elements in 
the form of stringers, beams or inclusions have been considered in [1-3]. Problems for an elastic isotropic 
or anisotropic wedge, reinforced with elastic elements of constant stiffness [4-8], and, also, the problem 
for an elastic isotropic wedge reinforced along the bisectrix by an elastic rod of variable stiffness [9] 
have been investigated using boundary-value problems in the theory of analytic functions. The contact 
problem for an anisotropic wedge-shaped plate with an elastic mounting of variable stiffness has been 
considered in [10]. 

We will assume that a beam with stiffness D(x) lies on one boundary (arg z = 0) of an elastic anisotropic 
body which occupies an angle -0  _< arg z < 0 in the z = x + iy plane and that a distributed normal load 
of strength Po(x) is applied to the beam. We shall assume that Po(x) is a bounded summable function, 
equal to zero outside a certain interval. There is no friction between the beam and the wedge. The other 
boundary of the wedge (arg z = -0)  is stress-free, 0 < 0 < 2re. 

The problem reduces to the following problem of the equilibrium of an elastic angle 

d 2 d 21) 
dx---~D(x) dx.--- ~ = Po(x) - P(x), 

Eo(x)h3(x) 
T, x y ( X , O )  = O , X>0;  D(X) -12(1_V02 ) (1) 

X,(t) = Y,(t) = 0, argt = - 0  (2) 

where P(x) is the required contact stress, which satisfies the equilibrium conditions 

IP(t)  dt = IPo(t) dt = PO' ItP(t) dt = ItPo(t) dt = MO 
o 0 0 0 

(3) 

Eo(x) is the modulus of elasticity of the beam, h(x) is its thickness, v0 is Poiss0n's ratio and v(x) is the 
vertical displacement of the points of the beam. 
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We will consider the two planes of the complex variables: zl = Xl + i y l  and z 2 = X 2 + iy  2 which are 
obtained from the z = x + iy plane by the corresponding affine transformations 

X l = x + a l y ,  Yl = [31Y, X2 = X + t~2y, Y2 = ~2Y; ~1 > ~2 > 0 

Using these transformation, the domain S(-0 < argz ___ 0) of the plane of the variable z transfers 
respectively into the domain S~(-0k < argzk -< 0) of the plane of the variable zk, (k = 1, 2), tg0~ = 
[3~sin0(cos0 - txksin0) -1. 

If the roots of the characteristic equation S l e  s2, on the basis of the well-known formulae [11], the 
problem reduces to finding the functions q51(z1) and qbffz2), which are holomorphic in the domains $1 
and $2 respectively with the following boundary conditions 

(Sl - S2)tltI)l(/1) + ('~1 -s2)tltI)l(t l)  + (S2-S2)t2tD2(t2) = 0 

t k = p(cosO-sksinO),  p = Itl > 0  

(Sl  - S2 ) t I ) l ( t )  + (Sl -- $2) t I )1( t )  + ($2 - $ 2 ) 0 2  ( t )  = -s2 P( t ) ,  t > 0 

, , 1 x l 
2Re[ql* l (X ) + q202(x)] = -D--~IdtI[Po(s)- P(s)lds, x > 0 

0 0 

It is required of the functions (I)l(2"1) and (I)2(Z2) that they should satisfy the conditions 

limzkq~k(Zk) ---) 0, Zk ~ 0, k = 1, 2 

and, for sufficiently large [Zkl, have the form 

~k(Zk) = 7k/Zk+O(1]Zk), k = 1,2 

(4) 

(5) 

(6) 

(7) 

1 ~t Ak(t) itlnzk ifi_Ak(0), 
Ok(Zk) = 4 ~ Z k  J t e - 42 Z zke Sk (8) 

Moreover, Ak(0) satisfy the condition 

(S2 -- s2)A2(0) = (s2 - s 1 ) A I ( 0 )  + (Sl - s 2 ) A I ( 0 )  

Introducing the values (8) into boundary conditions (4) and (5), we obtain 

- . -v l tN( t )  
Ak(t ) = [it(s2 _ ~2)ei(3-zk)~tt + S3-k(Sk -- S3-k) e-(3- Zk)St + s3-k(k 2 _ sl)e 12--~) 

In cos 0 - s 1 sin 0 ,  
g =  ~ s - ~ n 0  ~ 5 = 0 1 - 0 2 ,  ~ = 0 1 + 0 2  

A(t) = Is1 - s212ch~'t-Is, - h[2ch& + 4~l~2cosgt,  

The first equality of (3) gives 

where 

1 ¢ r~, s .  s - i t s .  
N(t) = ~ j r t e  )e e as 

: f : fP(,)d  -- po 
~oo 0 

(9) 
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Taking the limit in equalities (9) as t ~ 0, we obtain 

Ak(O ) = 
2(-1 )k~t~2S k + (-1)t833_k(3k - s 3 - k )  4- ~ts 3 _k(S1 -- $2) Po 

- ' = -  - ~ l1292 - 413,132g 2 

Introducing the values of the functions ~k(zk), represented by formula (8), into boundary condition 
(6) and bearing in mind equality (9), we will have 

i . itlnx , , 1 ( i t -  1 )(A 2 + t A 1 ) N ( t ) e  _ c 
2 R e [ q l ~ l ( X  ) + q2(II2(x)] = ~ - ~  a t  + x2 (10) 

where 

c = ,,/~Im[qlAl(0) + q2A2(0)] 

= + c~singt, a 2 c h y t  + a2ch~ t  + c 1 cosgt At(t) a l S h T t + a - l s h ~ t +  az(t) = + 

+ 
C 1 = 2~2Im[gtls11 _+ 21~1Im[¢/2S 2] 

÷ , + 

a2 + ia-  1 = (gT1s2-q2s1)(Sl  -s2) ,  a2 + tal = ( q l s 2 - q 2 s l ) ( s 2 - s l )  

Substituting the values of ql and q2 [1 1] into these formulae, carrying out some reduction and applying 
Vieta's theorem, we obtain 

( 1  1 )  ( 1  1) 
a I a z z l S ~ - s 2 l e l m  + , al  = a22[s l - s 2 1 2 I m  -~1 

= - -2 -2 

+ = a 2 =  Cl = 0, C l =  4~1~2Re(~1-~2 ), A2(t' = 0 a2 

where a22 is one of the constants of elasticity of the plate. 
Consequently, according to formula (10), condition (6) takes the form 

2 x t 

4~-~I G(t)N(t)eitlnxdt ~ (X) I  I t + dt [P(s ) -P0(s ) ]ds  = c; 

-~ 0 0 

( 1  - i t ) A l ( t )  
G( t )  = (11) A(t) 

The functions A(t) and Al(t ) do not vanish anywhere except at the point t = 0. The point t = 0 is a 
second-order zero for the function A(t) and a first-order zero for the function Afr 0. 

We put D ( x )  = do xp + 2, do > 0 wherep is any real number. After substituting G0 = lnx into formula 
(11), differentiating both sides of the resulting equality and carrying out an inverse Fourier 
transformation, we obtain 

dot(P + i t ) G ( t ) W ( t )  + W ( t -  ip )  = F ( t ) ,  - ~ - ie < t < ~ - i t  (12) 

where 

N ( t )  - No( t )  
 e(t) = t 

F(  t) = - d o G (  t ) ( p  + i t ) N o ( t ) ,  No( t  ) 1 i s ~ .  s. -its. = ~ e r o t e  )e as 
_ ¢ m  

and e is a positive number which may be as small as desired. 
The following problem arises: to find a function, which is homomorphic in the strip -p - e < Imz < -e, 

vanishes at infinity, is continuable in the boundary of the strip and satisfies condition (12). 
The function F( t )  is analytically extendable in the strip 0 < Imz < p except for the points which are 

the roots of the function A(t), where it has poles, and it vanishes at infinity. 
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Suppose p > O. Then, the coefficients of the problem can be given the form 

sh ~---(t-ip) t ( t - i p ) ( t + i ) A l ( t )  + 2 ,~ ,  ,÷,Al(t)a. n .  2p 
A(t) = it(t2 A(t) 2p Sh~pt P ) l p t ~ ) - - u J - - t  

t + i  
7" t ~.p,t, - t + i p  

We consider the function 

Gp(t)  = Tp(t )Up(t)  

where 

A l ( t ) .  n ,. a~(t) ( ~ +  1 )  
Up(t) = a - -~ t t l~p t ,  a = tum.oA----~ - = a22Im ~2 

The function Gp(t) is continuous along the whole of the axis and Gp(-oo) = Gp(+ oo) = 0. The function 
Up(t) takes positive values and the function T.(t)  has a single zero and one pole in the lower half plane 
and, therefore, Ind Gp(t) = 0. The branch of t[ae function In Gp(t) which vanishes at infinity is integrable 
along the whole of the axis. 

On the basis of results obtained earlier in [12], the functions @(t) ,  t 2 + p2 and the number ado can 
be represented in the form 

X p ( t - i p )  t 2 + p  2 X l ( t - i p )  X 2 ( t - i p )  - ~ - i e < t < ( ~ - i e )  (13) 
Gp(t)  = Xp(t) ' = Xl(t  ) ' ado = X2(t) ; 

where 

i } Xp(z) = exp 1 l n G p ( t ) e t h n ( t - z ) d t  

- ~ - i l ~  

Xl(z) = pZtZ/PF(1 + i z lp ) /F (2  - i z /p) ,  X2(z ) = exp( i ( z /p ) ln (ado) ) ;  - p _ e < Imz < -e  

Substituting expressions (13) into formula (12), we obtain 

tF(t___)) + ~F(t - ip)  _ F( t )  - ~ - ie < t < e - ie 
X(t) X ( t -  ip)  X ( t -  ip) '  

X(z) = 1Xp(z)XI(z)X2(z ) shff---:_zpijpF(1 + iz /p)  z p  

(14) 

The functions Xp(z) and X2(z ) are bounded in the whole of the strip and, for sufficiently large ]z I, the 
function Xx(z) admits of the estimate 

IXl(z)] = O(It]-2x/p-1), z = t + i x ,  - p < x < 0  

Hence it follows that 

X(z) = O(It1-3x/p- u2), - p  <'c < 0 

Hence, the solution of problem (14) can be represented in the form 

- iE :  

X(z) F(t )d t  
~,'(z)- 2ip ~ 

- ~ - i e X ( t  - ip) Shp(t - z) 
- p - e < I m z  < - e  (15) 
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Supposep __ 1. If the function No(t) is analytically continuable in the strip -1 < Imz < 1 and vanishes 
exponentially at infinity, it follows from condition (12) and formula (15) that the function 

[ W(z), - p -  e < Imz < - e  

Wl(z) = ~ F ( z ) - W ( z - i p )  _. t ~ - ~ ,  -e<lmz<p-e 
[ d°z(P + iz) (z) 

is holomorphic in the strip -p - e < Imz < p - ~, vanishes exponentially at infinity and is bounded in 
the whole strip apart from at the points z~: = t~ + ix~- (j = 1, 2, . . . ,  l) which are the zeros of the function 
G(z) in the strip -~ < Imz < p - ~. 

Using Cauchy's formula, the required contact stress can be represented in the form 

1 i t~,(t)em~Xdt = ~ X  J ( t_ip)W(t_ip)ei( t - ip) lnXd,  Ae(x) = e ( x ) -  eo(x)  = ,~-~x . . . .  

Consequently, in the neighbourhood of the vertex of the angle (x ---) 0), we have AP(x) = x p - lg(x), 
where g(x) is a bounded function when x >_ 0. For large x, we have AP(x) = O(x -(1 + ~1)). 

If 0 < p < 1, the function q~(z), which is given by formula (15), is analytically continuable in the strip 
-1 < Imz < -~ except at the points w 7 = )~7 + ig 7 (j  = 1, 2, . . . ,  q) which are the poles of the function 
G(z) in this strip. In the neighbourhood of the point x = 0, the normal contact stress can then be 
represented in the following manner: AP(x) = ~x -(I ÷ ~i) + ~(x), where g(x) is a bounded function when 
x > 0, ~ = const. 

We will now consider the case whenp  < 2, that is, the stiffness of the rod increases at the vertex of 
the angle and decreases at infinity. On introducing the notation m = -p (m > 0), using reasoning similar 
to that presented above, we can write condition (12) in the form 

Wo(t + ira) Fo(t) q'°( t---- ) + ~- - - ~ + ie < t < ~ + ie 
X(t) X(t + im) X( t ) '  

X(Z) = ~Xm(z) l~(z)(z-  im/2)Sh~mmZ, 8 < Imz < m + 8 

Xm(Z ) = exp lnGm(t)cth ( t - z ) d t  
- 0 o + 1 £  

• - 3 t z / m  2 
~c(Z) = exp( - t z /mln(ado) )m F (1 + iz /m)/F(2 + iz/m) 

(16) 

t + i 2 t -  imAl(t) ~mm 
Gin(t) = a ( t - i m ) 2 t + i m A ( t )  th t 

For sufficiently large Izl, the function X(z) admits of the estimate 

]J~(z)[ = O(It13x/m-5/2), 0 < x < m  

The function qJo(z)lX(z) is holomorphic in the strip 8 < Imz < m + e except at the point z = im/2 
where it can have a first-order pole. The solution of problem (16) is therefore given by the formula 

~ + t E  

X(Z) I ~ F°(t ldt  A°X(z )  

go(z )  = 2im i m ) s h ~ ( t  z) + -**+ieX(t + - ch-~z 
m 

Fo(Z ) = do ( i z -1 ) (m- i z ) (A I (Z ) IA( z ) )No(Z) ,  A 0 = const, e < I r n z < m + e  
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From the equality 

I t ( P ( t ) -  Po(t))dt = 0 
0 

we obtain g0(i) = 0, whence the constantA0 is also determined. 
The function 

[ Wo(Z), e < I m z < m + e  

W2(z) = J Fo(z) + Wo(Z + ira) 
t ~ ~  , - m - E < I m z < E  
[ doz(m-iz)G(z)  

is holomorphic in the strip -m + e < Imz < m + e, vanishes at infinity and is continuable in the boundary 
of the strip except at the points z f  = t f  + i"cf (j = 1, 2, . . . ,  n) which are the zeros of the function G(z) 
in the s t r ip-m + e < Imz < e. 

If x~ < -1, then the function qS2(z ) is analytically continuable in the strip -1 < Imz < rn + e and the 
normal contact stress AP(x) is bounded in the neighbourhood of the point x = 0. 

If "Cl > -1, the function tIS2(Z ) has a pole very close to the real axis at the point z~ = t7 + i'c~ and, 
consequently, the contact stress in the neighbourhood of the pointx = 0 can be represented in the form 

A P ( x )  = Cl x - ( l + ' ~ l ) + ~ l ( x  ) 

where ~?l(x) is a bounded function when x > 0,  c l  = const. For large x, we have 

AP(x) = O(x-l-m),  X--~ °o 

We will now consider some special cases. As will be clear from the subsequent account, in the cases 
being considered 

O(xP-1), p> 1 

AP(x) = ]O(x~), 0 < p < l ;  

[o(xn) ,  p < 0  

x ~ 0 (17) 

Suppose the domain S is a half-plane. Then, 

0 1 = 0 2 = 0 = /g, ~ = 0 ,  y = 2re, g = 0 

A(t) = 2lSl-S2[2shltt, Al(t) = 2lSl-S212ashrttchrct 

Hence it follows that "c~ = -1/2, g~ = -1 and the function AP(x) satisfies relations (17) when { = 0, 
r I = -1/2. 

When 0 = 2rt, that is, the plane is cut along the real, positive axis, we obtain 

0 1  = 0 2 = 27r, 8 = 0 ,  7 = 4re, g = 0 

A(t) = 2Is 1 -s212sh2rct, Al(t) = 21s l-s21zashEgtch21tt 

Consequently, Zl = -1/4, gl  = -1/2 and the function AP(x) satisfies relations (17) when ~ = -1/2, 
rl = -3/4. 

Note that, whenp = m = 0, condition (12) gives 

• 2 W(z) = F(z)/(tdoz G(z) + 1) 

and the estimate 

AP(x) = O(x ~'-1) when x - ~ 0  
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holds for the normal stress, where )~ = - I m g  and g is the zero of the function idoz2G(z) + 1 in the 
lower half-plane which is closest to the real axis. 

In the special case, when the body is orthotropic and one of its axes of anisotropy is parallel to the 
edge of the wedge on which the beam is supported, it has been proved that, when p < 0, the normal 
contact stress in the neighbourhood of the end of the beam is bounded when 0 _< ~/2 and has the form 
AP(x) = O(x-*°), x ~ 0 when 0 > re/2, where 0 < % _< 3/4. In particular, we have AP(x) = 0(X-2/3), 
X ~ 0 when 0 = 3n/2. 
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